A Quantitative Helly-Type Theorem: Containment in a Homothet

نویسندگان

چکیده

We introduce a new variant of quantitative Helly-type theorems: the minimal homothetic distance intersection family convex sets to subfamily fixed size. As an application, we establish following result for diameter. If $K$ is finitely many bodies in $\mathbb{R}^d$, then one can select $2d$ these whose diameter at most $(2d)^3{diam}(K)$. The best previously known estimate, due Brazitikos [Bull. Hellenic Math. Soc., 62 (2018), pp. 19--25], $c d^{11/2}$. Moreover, confirm that multiplicative factor d^{1/2}$ conjectured by Bárány, Katchalski, and Pach [Proc. Amer. 86 (1982), 109--114] cannot be improved. bounds above follow from our key concerns sparse approximation polytope hull well-chosen subset its vertices: Assume $Q \subset {\mathbb R}^d$ centroid origin. Then there exist 2d vertices $Q$ $Q^{\prime \prime}$ satisfies - 8d^3 Q^{\prime \prime}.$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A helly type theorem for hypersurfaces

Let r be a commutative field (finite or infinite) and let P = P(n, r) be the n-dimensional projective space over ZY Then every point x E P can be expressed by n + 1 homogene coordinates x = (x,,..., x,), not all zero and (x0,..., x,) = @x0,..., Ax,) for OflET. By a hypersurface of degree d we simply mean the set of all points x E P with p(x) = 0, where p(x) is a homogenous polynomial of degree ...

متن کامل

A Short Proof of an Interesting Helly-Type Theorem

We give a short proof of the theorem that any family of subsets of R with the property that the intersection of any non empty nite subfamily can be represented as the disjoint union of at most k closed convex sets has Helly number at most k d

متن کامل

A Helly Type Theorem for Abstract Projective Geometries

We prove that the lattice of linear partitions in a projective geometry of rank n has Helly number b3n/2c.

متن کامل

Leray Numbers of Projections and a Topological Helly Type Theorem

Let X be a simplicial complex on the vertex set V . The rational Leray number L(X) of X is the minimal d such that H̃i(Y ;Q) = 0 for all induced subcomplexes Y ⊂ X and i ≥ d. Suppose V = ⋃m i=1 Vi is a partition of V such that the induced subcomplexes X[Vi] are all 0-dimensional. Let π denote the projection of X into the (m − 1)-simplex on the vertex set {1, . . . ,m} given by π(v) = i if v ∈ Vi...

متن کامل

A Helly-type theorem for higher-dimensional transversals

We generalize the Hadwiger(-Danzer-Grünbaum-Klee) theorem on line transversals for an unbounded family of compact convex sets to the case of transversal planes of arbitrary dimension. This is the first Helly-type theorem known for transversals of dimension between 1 and d− 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2022

ISSN: ['1095-7146', '0895-4801']

DOI: https://doi.org/10.1137/21m1403308